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Full-System Workloads, What’s out There? (ARM) 

 gem5 can support workloads for Android/Linux out of the box 

 Models RealView/Versatile Express development boards 

 Have successfully run Android and Ubuntu 

 With gui support over VNC 

 Need to compile OS, kernel, and workloads for proper target 

 May also need to modify startup scripts and other file on image 

 Pre-compiled disk images and kernels exist as well 

 Linaro (Ubuntu) and BBench (Android) images 
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Beyond SPEC CPU: Java Workloads 

 DaCapo Benchmarks 

 Real-world, open-source Java benchmarks 

 Need full-system simulation 

 Can’t really compile statically 

 Need Java VM and associated libraries 

 Appropriate OS: Ubuntu 

 Can utilize QEMU to install required packages quickly 

 

QEMU 

Disk Image (Ubuntu) 

Mount image 
Chroot image’s root dir 
apt-get install libs 
apt-get install JVM, etc. 
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BBench: Web-Browser Benchmarking 

 Web-browser benchmark 

 Collection of several relevant pages scraped from the web in 2011 

 JavaScript automates the rendering of each page 

 Ported to gem5 on both Gingerbread and ICS 
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 Can’t interact very easily – Ensure BBench is fully automated 
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BBench: Web-Browser Benchmarking 

 Web-browser benchmark 

 Collection of several relevant pages scraped from the web in 2011 

 JavaScript automates the rendering of each page 

 Ported to gem5 on both Gingerbread and ICS 

 Challenges 

 Can’t interact very easily – Ensure BBench is fully automated 

 Terminate when benchmark finishes – Tricky scripting to terminate run 

 Prevent screen from locking – Modify Android FS source to prevent lock 



9 9 

9 

University of Michigan 

Challenges with Interactive Applications 

 Running interactive applications 

 How do we automate these apps? 

 How do me model interactivity? 

 What if the application relies on devices? 

 GPS, GPU, radio, etc. 

 E.g., BBench on gem5 spends majority of time in SW rendering – no 

GPU 

 Things I’d like to seem in gem5: 

 Support for more realistic devices 

 Care about interaction with devices, so functional modeling could be enough 

 A centralized location for available workloads 

CPU 
Caches 

Interconnect 

Black-Box 

GPU Model GL Calls 
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Modeling an Asymmetric Multi-Core System 

 gem5 supports several CPU models 

 Out-of-order, in-order, single-cycle timing, atomic 

 Generic interface between allows for multiple types at once 

 Out-of-order <-> in-order 

 Out-of-order <-> timing 

 In-order <-> timing 

 Atomic and timing models don’t mix well 

 Setup everything in Python config scripts 

Source: Greenhalgh, 2011. ARM white paper. 

ARM big.LITTLE Processing 
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Two Ways to Model Asymmetric Cores 

 1) All cores are always active 

 Inside your config scripts define CPUs of multiple types: 

m5.drain(test_sys) # drains all objects 
m5.switchCpus(switch_cpu_list) # switches the CPUs & transfers state 
m5.resume(test_sys) # tell all objects to resume 

 2) Only cores of a certain type are active 

 Define multiple lists of CPUs and switch back-and-forth: 

test_sys.big_cpus = [DerivO3CPU(cpu_id=0), DerivO3CPU(cpu_id=1)] 
test_sys.big_cpus = [InOrderCPU(cpu_id=0), InOrderCPU(cpu_id=1)] 
switch_cpu_list = [(test_sys.big_cpu[i], test_sys.little_cpu[i]) for i in xrange(np)] 

 Then, on a switch event, use switching infrastructure: 

 Then, just run simulation as normal 

test_sys.cpus = [DerivO3CPU(cpu_id=0), InOrderCPU(cpu_id=1)] 
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Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Running Switched Out 1. drain() 

L2 Bus 
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Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Running Switched Out 

Needs to drain 

1. drain() 

L2 Bus 
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Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Running Switched Out 

Needs to drain 

1. drain() 

Drained 

L2 Bus 
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Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Running Switched Out 1. drain() 

Drained 

L2 Bus 

Signal Drained 
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Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Switched Out Switched Out 1. drain() 
2. switchOut() 

L2 Bus 



18 18 

18 

University of Michigan 

Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Switched Out Switched Out 1. drain() 
2. switchOut() 
3. takeOverFrom() 

L2 Bus 

Transfer state 
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Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Running Switched Out 1. drain() 
2. switchOut() 
3. takeOverFrom() 
4. Resume() 

L2 Bus 
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No Cache Swapping 

 More realistic migration modeling 

 Give each core their own L1 caches 

 In takeOverFrom(), don’t swap caches 

CPU 1 CPU 2 

I$ D$ 

L2 

L2 Bus 

I$ D$ 

L2 Bus 

Clean/Invalidate Cache during drain() 
 dCache.memWriteback(); 
 iCache.memWriteback(); 
 dCache.memInvalidate(); 
 iCache.memInvalidate(); 
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What’s Missing? 

 Realistic timing of thread migration 

 Registers, caches, and all other thread context transferred (atomically) 

 InOrderCPU support for ARM, x86 

 Currently using scaled-down O3, or TimingSimpleCPU to model InOrder 

 Account for cache state transfer/cleaning overhead 

 Currently, caches are swapped between cores, or cleaned atomically 
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Questions? 


