
1 1 

1 

Full-System Workloads and 

Asymmetric Multi-Core Simulation 

Anthony Gutierrez 

atgutier@umich.edu 

Advanced Computer Architecture Laboratory 

University of Michigan, Ann Arbor, MI 



2 2 

2 

University of Michigan 

Outline 

 Part I: Using Full-System Workloads 

 Available Full-System Workloads 

 Beyond SPEC CPU: Java Workloads 

 BBench: Example Interactive Workload 

 Interactive Workload Challenges and What We Need 

 Part II: Asymmetric Multi-Core Simulation 

 Modeling an Asymmetric Multi-Core Simulation 

 Thread Migration in gem5 

 What is Still Missing 



3 3 

3 

University of Michigan 

Full-System Workloads, What’s out There? (ARM) 

 gem5 can support workloads for Android/Linux out of the box 

 Models RealView/Versatile Express development boards 

 Have successfully run Android and Ubuntu 

 With gui support over VNC 

 Need to compile OS, kernel, and workloads for proper target 

 May also need to modify startup scripts and other file on image 

 Pre-compiled disk images and kernels exist as well 

 Linaro (Ubuntu) and BBench (Android) images 



4 4 

4 

University of Michigan 

Beyond SPEC CPU: Java Workloads 

 DaCapo Benchmarks 

 Real-world, open-source Java benchmarks 

 Need full-system simulation 

 Can’t really compile statically 

 Need Java VM and associated libraries 

 Appropriate OS: Ubuntu 

 Can utilize QEMU to install required packages quickly 

 

QEMU 

Disk Image (Ubuntu) 

Mount image 
Chroot image’s root dir 
apt-get install libs 
apt-get install JVM, etc. 



5 5 

5 

University of Michigan 

BBench: Web-Browser Benchmarking 

 Web-browser benchmark 

 Collection of several relevant pages scraped from the web in 2011 

 JavaScript automates the rendering of each page 

 Ported to gem5 on both Gingerbread and ICS 



6 6 

6 

University of Michigan 

BBench: Web-Browser Benchmarking 

 Web-browser benchmark 

 Collection of several relevant pages scraped from the web in 2011 

 JavaScript automates the rendering of each page 

 Ported to gem5 on both Gingerbread and ICS 

 Challenges 

 Can’t interact very easily – Ensure BBench is fully automated 



7 7 

7 

University of Michigan 

BBench: Web-Browser Benchmarking 

 Web-browser benchmark 

 Collection of several relevant pages scraped from the web in 2011 

 JavaScript automates the rendering of each page 

 Ported to gem5 on both Gingerbread and ICS 

 Challenges 

 Can’t interact very easily – Ensure BBench is fully automated 

 Terminate when benchmark finishes – Tricky scripting to terminate run 



8 8 

8 

University of Michigan 

BBench: Web-Browser Benchmarking 

 Web-browser benchmark 

 Collection of several relevant pages scraped from the web in 2011 

 JavaScript automates the rendering of each page 

 Ported to gem5 on both Gingerbread and ICS 

 Challenges 

 Can’t interact very easily – Ensure BBench is fully automated 

 Terminate when benchmark finishes – Tricky scripting to terminate run 

 Prevent screen from locking – Modify Android FS source to prevent lock 



9 9 

9 

University of Michigan 

Challenges with Interactive Applications 

 Running interactive applications 

 How do we automate these apps? 

 How do me model interactivity? 

 What if the application relies on devices? 

 GPS, GPU, radio, etc. 

 E.g., BBench on gem5 spends majority of time in SW rendering – no 

GPU 

 Things I’d like to seem in gem5: 

 Support for more realistic devices 

 Care about interaction with devices, so functional modeling could be enough 

 A centralized location for available workloads 

CPU 
Caches 

Interconnect 

Black-Box 

GPU Model GL Calls 



10 10 

10 

University of Michigan 

Outline 

 Part I: Using Full-System Workloads 

 Available Full-System Workloads 

 Beyond SPEC CPU: Java Workloads 

 BBench: Example Interactive Workload 

 Interactive Workload Challenges and What We Need 

 Part II: Asymmetric Multi-Core Simulation 

 Modeling an Asymmetric Multi-Core Simulation 

 Thread Migration in gem5 

 What is Still Missing 



11 11 

11 

University of Michigan 

Modeling an Asymmetric Multi-Core System 

 gem5 supports several CPU models 

 Out-of-order, in-order, single-cycle timing, atomic 

 Generic interface between allows for multiple types at once 

 Out-of-order <-> in-order 

 Out-of-order <-> timing 

 In-order <-> timing 

 Atomic and timing models don’t mix well 

 Setup everything in Python config scripts 

Source: Greenhalgh, 2011. ARM white paper. 

ARM big.LITTLE Processing 



12 12 

12 

University of Michigan 

Two Ways to Model Asymmetric Cores 

 1) All cores are always active 

 Inside your config scripts define CPUs of multiple types: 

m5.drain(test_sys) # drains all objects 
m5.switchCpus(switch_cpu_list) # switches the CPUs & transfers state 
m5.resume(test_sys) # tell all objects to resume 

 2) Only cores of a certain type are active 

 Define multiple lists of CPUs and switch back-and-forth: 

test_sys.big_cpus = [DerivO3CPU(cpu_id=0), DerivO3CPU(cpu_id=1)] 
test_sys.big_cpus = [InOrderCPU(cpu_id=0), InOrderCPU(cpu_id=1)] 
switch_cpu_list = [(test_sys.big_cpu[i], test_sys.little_cpu[i]) for i in xrange(np)] 

 Then, on a switch event, use switching infrastructure: 

 Then, just run simulation as normal 

test_sys.cpus = [DerivO3CPU(cpu_id=0), InOrderCPU(cpu_id=1)] 



13 13 

13 

University of Michigan 

Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Running Switched Out 1. drain() 

L2 Bus 



14 14 

14 

University of Michigan 

Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Running Switched Out 

Needs to drain 

1. drain() 

L2 Bus 



15 15 

15 

University of Michigan 

Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Running Switched Out 

Needs to drain 

1. drain() 

Drained 

L2 Bus 



16 16 

16 

University of Michigan 

Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Running Switched Out 1. drain() 

Drained 

L2 Bus 

Signal Drained 



17 17 

17 

University of Michigan 

Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Switched Out Switched Out 1. drain() 
2. switchOut() 

L2 Bus 



18 18 

18 

University of Michigan 

Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Switched Out Switched Out 1. drain() 
2. switchOut() 
3. takeOverFrom() 

L2 Bus 

Transfer state 



19 19 

19 

University of Michigan 

Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Running Switched Out 1. drain() 
2. switchOut() 
3. takeOverFrom() 
4. Resume() 

L2 Bus 



20 20 

20 

University of Michigan 

No Cache Swapping 

 More realistic migration modeling 

 Give each core their own L1 caches 

 In takeOverFrom(), don’t swap caches 

CPU 1 CPU 2 

I$ D$ 

L2 

L2 Bus 

I$ D$ 

L2 Bus 

Clean/Invalidate Cache during drain() 
 dCache.memWriteback(); 
 iCache.memWriteback(); 
 dCache.memInvalidate(); 
 iCache.memInvalidate(); 



21 21 

21 

University of Michigan 

What’s Missing? 

 Realistic timing of thread migration 

 Registers, caches, and all other thread context transferred (atomically) 

 InOrderCPU support for ARM, x86 

 Currently using scaled-down O3, or TimingSimpleCPU to model InOrder 

 Account for cache state transfer/cleaning overhead 

 Currently, caches are swapped between cores, or cleaned atomically 

 



22 22 

22 

University of Michigan 

Questions? 


