
SUPPORTING NATIVE 

PTHREADS IN SYSCALL

EMULATION MODE
BRANDON POTTER

JUNE 14TH, 2015



2 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

WHAT ARE M5THREADS’ PROBLEMS?

� Gem5 currently supports pthreads using the gem5-specific m5threads library.

� M5threads is not a complete pthread library.

• Some runtime frameworks need extensive support.

� M5threads is not what a real system would run.

� Confuses new users.

• Users need to learn that the library exists.

• Then they need to compile and link against it.

• Only supports archive format.

• Hopefully, no one runs into any problems:

� https://www.mail-archive.com/gem5-dev@m5sim.org/msg07204.html

� http://www.mail-archive.com/gem5-users%40gem5.org/msg11054.html



3 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

OUTLINE

� What is the Native Posix Thread Library (NPTL)?

� Which system calls needed modifications?

• clone

• futex

• set_tid_address

• exit / exit_group

• execve

� How extensively do these changes support the pthread API?

� Putting it all together diagram. (time permitting)



4 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

WHAT IS THE NATIVE POSIX THREAD LIBRARY?

� NPTL is the POSIX thread library that comes with GLIBC.

� POSIX compliant pthread library.

� Replaced earlier non-compliant libraries circa 2005 (early Linux 2.6 kernels).

� Tightly coupled with Linux kernel.



5 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

CLONE

� Clone is responsible for both thread and process creation.

• Gem5 had a prior version of clone that supported thread creation only.

� LiveProcess duplicated inside clone and bound to new ThreadContext.

• Attributes are specified in the flags argument. (man 2 clone)

� Added support for TLS, thread groups, and futex support:

• Required adding the following flags: CLONE_THREAD, 

CLONE_PARENT_SETTID, CLONE_CHILD_CLEARTID, CLONE_SETTLS.

� ThreadContext is statically allocated at runtime on command line.

• Ownership changes dynamically at runtime; not currently recycled after use. 



6 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

FUTEX

� Futex is the synchronization mechanism for pthreads.

• Operates at the boundary of userspace and the kernel.

• Only need to call into a futex system call if the lock is contended.

• User depends on kernel to put the contended thread to sleep and awakens it later 

when another thread as finished with the lock.

� Originally written by Daniel Sanchez while he was at Stanford.

� Basic operation uses two methods, FUTEX_WAIT (sleep) and FUTEX_WAKE.

� Futex needed to be extended to work with thread groups and we refactored 

the code into its own class (Thanks to Alexandru Dutu – AMD Research).



7 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

SET_TID_ADDRESS

� The Linux kernel has two fields for each process, set_child_tid and 

clear_child_tid, that start out as NULL.

� The set_child_tid field  indicates the address where the child should write 

its PID at startup.

� The clear_child_tid field indicates the address where the child should 

clear its PID and call a futex wakeup on.

� This functionality helps notify the parent thread (thread group leader) when 

child threads finish their tasks.



8 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

EXIT / EXIT_GROUP

� Exit ends process execution and returns an exit status to its parent.

� Exit_group ends execution of an entire thread group.

• Thread group is a set of threads that share a thread group leader.

• The thread group leader is the process which starts cloning threads.

� Added support to exit and implemented exit_group.

• When exit_group is called, all threads for that thread group leader need to exit; 

achieve this by checking this state when system calls are called.

• If CHILD_CLEARTID was set, need to call FUTEX_WAKE on that address.

• Calling exit no longer exits simulation until the last context has finished running.

• Releases LiveProcess state, such as file descriptors,  inside of exit.



9 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

EXECVE

� Not directly related to pthread support, but can now support multiple 

processes with moderate effort.

� Completely new, there was no notion of execve in the code previously.

� Execve must do the following:

• Load object file.

• Inherit file descriptors from parent when appropriate.

• Set standard file descriptor to their defaults.

• Supply argv and envp to process constructor.

• Setup process identifier information (uid, pid, ppid, etc.)

• Reset SIGCHLD value.

• Setup the thread context.



10 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

PTHREADS API COVERAGE

� pthread_create

� pthread_exit

� pthread_join

� pthread_mutex_lock

� pthread_mutex_unlock

� pthread_mutex_init

� pthread_mutex_destroy

� pthread_cond_signal

� pthread_cond_wait

� pthread_attr_init

� pthread_attr_destroy

� pthread_attr_setdetachstate

� pthread_attr_getstacksize

� pthread_attr_setstacksize



11 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

CONCLUSION

� Support for Linux NPTL library is preferable to workarounds like m5threads.

� Required changes to clone, set_tid_address, futex, exit,  and 

exit_group to support the API presented in previous slide.

� Execution of concurrent processes in the future with execve and some 

additional support.

� Possible future work:

• Address futex corner cases (several options are unsupported).

• More support for clone options.

• Full support for all ISAs.



12 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

finish

main

thread1 thread2

main

int counter = 0;

pthread_mutex_t lk;

void * lock_incr(void* tid)

{

pthread_mutex_lock(&lk); 

counter += 1;  counter += 1;

pthread_mutex_unlock(&lk);

}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);

pthread_join(…);

pthread_join(…);

}



13 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

finish

main

thread1 thread2

main

clone

int counter = 0;

pthread_mutex_t lk;

void * lock_incr(void* tid)

{

pthread_mutex_lock(&lk); 

counter += 1;  counter += 1;

pthread_mutex_unlock(&lk);

}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);

pthread_join(…);

pthread_join(…);

}



14 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

finish

main

thread1 thread2

main

clone
set_tid_

address

int counter = 0;

pthread_mutex_t lk;

void * lock_incr(void* tid)

{

pthread_mutex_lock(&lk); 

counter += 1;  counter += 1;

pthread_mutex_unlock(&lk);

}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);

pthread_join(…);

pthread_join(…);

}



15 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

finish

main

thread1 thread2

main

clone
set_tid_

address

clone
int counter = 0;

pthread_mutex_t lk;

void * lock_incr(void* tid)

{

pthread_mutex_lock(&lk); 

counter += 1;  counter += 1;

pthread_mutex_unlock(&lk);

}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);

pthread_join(…);

pthread_join(…);

}



16 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

finish

main

thread1 thread2

main

clone
set_tid_

address

clone set_tid_

address

int counter = 0;

pthread_mutex_t lk;

void * lock_incr(void* tid)

{

pthread_mutex_lock(&lk); 

counter += 1;  counter += 1;

pthread_mutex_unlock(&lk);

}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);

pthread_join(…);

pthread_join(…);

}



17 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

finish

main

thread1 thread2

main

clone
set_tid_

address

clone set_tid_

address

int counter = 0;

pthread_mutex_t lk;

void * lock_incr(void* tid)

{

pthread_mutex_lock(&lk); 

counter += 1;  counter += 1;

pthread_mutex_unlock(&lk);

}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);

pthread_join(…);

pthread_join(…);

}

futex(wait)



18 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

finish

main

thread1 thread2

main

clone
set_tid_

address

clone set_tid_

address

int counter = 0;

pthread_mutex_t lk;

void * lock_incr(void* tid)

{

pthread_mutex_lock(&lk); 

counter += 1;  counter += 1;

pthread_mutex_unlock(&lk);

}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);

pthread_join(…);

pthread_join(…);

}

futex(wait)

futex(wake)



19 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

finish

main

thread1 thread2

main

clone
set_tid_

address

clone set_tid_

address

int counter = 0;

pthread_mutex_t lk;

void * lock_incr(void* tid)

{

pthread_mutex_lock(&lk); 

counter += 1;  counter += 1;

pthread_mutex_unlock(&lk);

}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);

pthread_join(…);

pthread_join(…);

}

futex(wait)

futex(wake)exit



20 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

finish

main

thread1 thread2

main

clone
set_tid_

address

clone set_tid_

address

int counter = 0;

pthread_mutex_t lk;

void * lock_incr(void* tid)

{

pthread_mutex_lock(&lk); 

counter += 1;  counter += 1;

pthread_mutex_unlock(&lk);

}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);

pthread_join(…);

pthread_join(…);

}

futex(wait)

futex(wake)exit



21 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

finish

main

thread1 thread2

main

clone
set_tid_

address

clone set_tid_

address

int counter = 0;

pthread_mutex_t lk;

void * lock_incr(void* tid)

{

pthread_mutex_lock(&lk); 

counter += 1;  counter += 1;

pthread_mutex_unlock(&lk);

}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);

pthread_join(…);

pthread_join(…);

}

futex(wait)

futex(wake)exit



22 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

finish

main

thread1 thread2

main

clone
set_tid_

address

clone set_tid_

address

int counter = 0;

pthread_mutex_t lk;

void * lock_incr(void* tid)

{

pthread_mutex_lock(&lk); 

counter += 1;  counter += 1;

pthread_mutex_unlock(&lk);

}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);

pthread_join(…);

pthread_join(…);

}

futex(wait)

futex(wake)exit

exit



23 |   SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE  |   JUNE 14TH, 2015   |   2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

finish

main

thread1 thread2

main

clone
set_tid_

address

clone set_tid_

address

int counter = 0;

pthread_mutex_t lk;

void * lock_incr(void* tid)

{

pthread_mutex_lock(&lk); 

counter += 1;  counter += 1;

pthread_mutex_unlock(&lk);

}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);

pthread_join(…);

pthread_join(…);

}

futex(wait)

futex(wake)exit

exit

exit_group


