AMD L1

SUPPORTING NATIVE
PTHREADS IN SYSCALL

EMULATION MODE 4

BRANDON POTTER
JUNE 14™ 2015

WHAT ARE M5THREADS’ PROBLEMS? AMD 1

A4 Gemb5 currently supports pthreads using the gem5-specific m5threads library.

A Mb5threads is not a complete pthread library.
e Some runtime frameworks need extensive support.

A4 M5threads is not what a real system would run.

A Confuses new users.
* Users need to learn that the library exists.
* Then they need to compile and link against it.
* Only supports archive format.
* Hopefully, no one runs into any problems:

= https://www.mail-archive.com/gem5-dev@m5sim.org/msg07204.html
= http://www.mail-archive.com/gem5-users%40gem5.org/msg11054.html

2 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

OUTLINE

A What is the Native Posix Thread Library (NPTL)?

4 Which system calls needed modifications?

clone

futex

set _tid address
exit / exit_group

execve

A4 How extensively do these changes support the pthread API?

A Putting it all together diagram. (time permitting)

3 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

AMD 1

WHAT IS THE NATIVE POSIX THREAD LIBRARY? AMD 1

A NPTL is the POSIX thread library that comes with GLIBC.

A POSIX compliant pthread library.

A Replaced earlier non-compliant libraries circa 2005 (early Linux 2.6 kernels).

A Tightly coupled with Linux kernel.

4 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

CLONE AMD 1

A Clone isresponsible for both thread and process creation.
* Gemb5 had a prior version of clone that supported thread creation only.

A LiveProcess duplicated inside c1one and bound to new ThreadContext.
 Attributes are specified in the flags argument. (man 2 clone)

4 Added support for TLS, thread groups, and futex support:

* Required adding the following flags: CLONE_THREAD,
CLONE_PARENT_SETTID, CLONE_CHILD_CLEARTID, CLONE_SETTLS.

A ThreadContext is statically allocated at runtime on command line.
* Ownership changes dynamically at runtime; not currently recycled after use.

5 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

FUTEX AMD 1

A Futex is the synchronization mechanism for pthreads.

» Operates at the boundary of userspace and the kernel.
* Only need to call into a futex system call if the lock is contended.

» User depends on kernel to put the contended thread to sleep and awakens it later
when another thread as finished with the lock.

A Originally written by Daniel Sanchez while he was at Stanford.
4 Basic operation uses two methods, FUTEX_WAIT (sleep) and FUTEX_WAKE.

A Futex needed to be extended to work with thread groups and we refactored
the code into its own class (Thanks to Alexandru Dutu — AMD Research).

6 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

SET_TID_ADDRESS AMD 1

A The Linux kernel has two fields for each process, set_child_tid and
clear child_tid, that start out as NULL.

4 The set_child tidfield indicates the address where the child should write
its PID at startup.

4 The clear child_ tidfield indicates the address where the child should
clear its PID and call a futex wakeup on.

A This functionality helps notify the parent thread (thread group leader) when
child threads finish their tasks.

7 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

EXIT / EXIT_GROUP AMD 1

4 Exit ends process execution and returns an exit status to its parent.

4 Exit_group ends execution of an entire thread group.
* Thread group is a set of threads that share a thread group leader.
* The thread group leader is the process which starts cloning threads.

A Added support to exit and implemented exit_group.

* When exit_group is called, all threads for that thread group leader need to exit;
achieve this by checking this state when system calls are called.

If CHILD CLEARTID was set, need to call FUTEX_WAKE on that address.

Calling exit no longer exits simulation until the last context has finished running.
Releases LiveProcess state, such as file descriptors, inside of exit.

8 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

EXECVE AMD 1

4 Not directly related to pthread support, but can now support multiple
processes with moderate effort.

4 Completely new, there was no notion of execve in the code previously.

A Execve must do the following:
* Load object file.

Inherit file descriptors from parent when appropriate.

Set standard file descriptor to their defaults.

Supply argv and envp to process constructor.

Setup process identifier information (uid, pid, ppid, etc.)
Reset STGCHLD value.

Setup the thread context.

9 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

PTHREADS APl COVERAGE AMD 1

pthread_ create pthread cond_signal

pthread exit pthread cond wait
pthread_ join pthread attr_ init
pthread mutex_ lock pthread attr_ destroy
pthread mutex_unlock pthread attr_ setdetachstate

pthread mutex init pthread attr_getstacksize

A A A A ANDANDA
A A M A AMNDANDA

pthread mutex destroy pthread attr_setstacksize

10 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

CONCLUSION AMDZ
A Support for Linux NPTL library is preferable to workarounds like m5threads.

4 Required changesto clone, set_tid_address, futex, exit, and
exit_group to support the API presented in previous slide.

4 Execution of concurrent processes in the future with execve and some
additional support.

A Possible future work:

» Address futex corner cases (several options are unsupported).
* More support for clone options.
* Full support for all ISAs.

11 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER AMD 1

int counter = 0;

main pthread_mutex_t lk;

\ void * lock_incr(void* tid)
{

pthread_mutex_lock(&lk);

threadl thread2
counter += 1; counter +=1;

pthread_mutex_unlock(&lk);

main int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);
pthread_join(...);
pthread_join(...);

12 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

AMD 1

main

clone \

threadl

thread2

main

7

int counter = 0;

pthread_mutex_t lk;

void * lock_incr(void* tid)

{
pthread_mutex_lock(&lk);
counter += 1; counter +=1;
pthread_mutex_unlock(&lk);

}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);
pthread_join(...);
pthread_join(...);

13 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

AMD 1

main

threadl

main

set _tid
clone address

int counter = 0;

pthread_mutex_t lk;

void * lock_incr(void* tid)

thread2

7

{
pthread_mutex_lock(&lk);

counter += 1; counter +=1;

pthread_mutex_unlock(&lk);
}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);
pthread_join(...);
pthread_join(...);

14 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

AMD 1

clone
main
set _tid
clone address
threadl thread2
y /
main

int counter = 0;
pthread_mutex_t lk;
void * lock_incr(void* tid)

{

}

int main(void)

{

pthread_mutex_lock(&Ik);

counter +=1; counter +=1;

pthread_mutex_unlock(&lk);

pthread_create(lock_incr);

pthread_create(lock_incr);

pthread_join(...);
pthread_join(...);

15 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

AMD 1

main

clone

set _tid

address
set _tid
clone address

int counter = 0;

pthread_mutex_t lk;

void * lock_incr(void* tid)

threadl

thread2

main

{

}

int main(void)

{

pthread_mutex_lock(&Ik);

counter += 1;| counter +=1;

pthread_mutex_unlock(&lk);

pthread_create(lock_incr);
pthread_create(lock_incr);

pthread_join(...);

pthread_join(...);

16 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

AMD 1

main

clone

threadl

main

set _tid

address
set _tid
clone address

thread2

futex (wait)

int counter = 0;
pthread_mutex_t lk;

void * lock_incr(void* tid)

{
pthread_mutex_lock(&lk);
counter += 1;| counter +=1;
pthread_mutex_unlock(&lk);
}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);

pthread_join(...);

pthread_join(...);

17 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

AMD 1

main

clone

threadl

set _tid

address
set _tid
clone address

thread2

futex (wake)

main

futex (wait)

int counter = 0;
pthread_mutex_t lk;
void * lock_incr(void* tid)

{

pthread_mutex_lock(&Ik);

counter +=1; counter +=1;

pthread_mutex_unlock(&lk);

}

int main(void)

{
pthread_create(lock_incr);
pthread_create(lock_incr);

pthread_join(...);

pthread_join(...);

18 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

AMD 1

_ clone set tid
main address
set _tid
clone address
threadl thread2
exit futex (wake)
\ 4
main futex (wait)

int counter = 0;
pthread_mutex_t lk;
void * lock_incr(void* tid)
{
pthread_mutex_lock(&lk);

counter += 1;| counter +=1;

pthread_mutex_unlock(&lk);

}

int main(void)

{

pthread_create(lock_incr);

pthread_create(lock_incr);

pthread_join(...);

pthread_join(...);

19 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

AMD 1

_ clone set_tid_
main address
set _tid
clone address
threadl thread2
exit futex (wake)
\ 4
main futex (wait)

int counter = 0;
pthread_mutex_t lk;
void * lock_incr(void* tid)
{
pthread_mutex_lock(&lk);

counter += 1; |counter +=1;

pthread_mutex_unlock(&lk);
}
int main(void)
{
pthread_create(lock_incr);
pthread_create(lock_incr);

pthread_join(...);

pthread_join(...);

20 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

AMD 1

_ clone set tid
main address
set _tid
clone address
threadl thread2
exit futex (wake)
\ 4
main futex (wait)

int counter = 0;
pthread_mutex_t lk;
void * lock_incr(void* tid)
{
pthread_mutex_lock(&lk);

counter += 1; counter +=1;

pthread_mutex_unlock(&lk);

}

int main(void)

{
pthread_create(lock_incr);
pthread_create(lock_incr);

pthread_join(...);

pthread_join(...);

21 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER

AMD 1

_ clone set tid
main address
set _tid
clone address
threadl thread2
exit futex (wake)
\ 4
main futex (wait)

exit

int counter = 0;
pthread_mutex_t lk;
void * lock_incr(void* tid)
{
pthread_mutex_lock(&lk);
counter += 1; counter +=1;

pthread_mutex_unlock(&lk);

}

int main(void)

{
pthread_create(lock_incr);
pthread_create(lock_incr);

pthread_join(...);

pthread_join(...);

22 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

PUTTING PIECES TOGETHER AMD 1

int counter = 0;

clone '
set_tid_ pthread_mutex_t Ik;

main address
set tid void * lock_incr(void* tid)
clone address {
pthread_mutex_lock(&lk);
threadl thread2
counter += 1; counter +=1;
exit futex (wake) pthread_mutex_unlock(&lk);
¥ }
main futex (wait) int main(void)
exit {

. pthread_create(lock_incr);
exit_group
pthread_create(lock_incr);
pthread_join(...);

pthread_join(...);

23 | SUPPORTING NATIVE PTHREADS IN SYSCALL EMULATION MODE | JUNE 14™, 2015 | 2015 GEM5 USER WORKSHOP

