
1 1

1

Customized InOrder CPU Modeling

Korey Sewell

University of Michigan, Ann Arbor
(Now at Qualcomm)

December 2nd, 2012

2 2

2

University of Michigan

Customized InOrder CPU Modeling

2

§ Agenda

§  InOrder CPU Model Basics
§ Pipeline Stages
§ Resources

§  Instruction Scheduling
§ Custom Resource Example: “Simple Value Predictor”

§ Deriving a Custom Resource
§ Making a Resource Recognizable

§ Adding a Resource to an Instruction Schedule
§ Extras

§ Complex Resource Handling, Stats, and Debugging

3 3

3

University of Michigan

InOrder CPU Model Basics

3

§  The InOrder model was designed to be a generic, flexible
framework for CPU simulation:
§  The user defines the number of Pipeline Stages
§  The user defines the Resources to be used in the pipeline (e.g.

Branch Predictors, ALUs, etc.)
§  Each Instruction tells the current Pipeline Stage what resources it

needs to access before it can be sent to the next stage.

§  The full list of actions that an instruction needs from each resource
is called an Instruction Schedule

InOrder CPU Model

4 4

4

University of Michigan

InOrder CPU Basics: Pipeline Stages

4

§  The PipelineStage class provides a generic structure for
instructions to communicate with resources
§  Implementation(s): pipeline_stage.cc, first_stage.cc

§  Special Case: FirstStage is a derived class whose sole purpose is to
create instructions for the pipeline

§  Pseudo code:
 for each Instruction in the pipeline stage

 for each Resource that an instruction needs to access

 bool completed = request(Instruction, Resource, Action);

 if (!completed)

 Stall the Pipeline;

 Stop Processing Instructions for this Cycle;

 Send Instruction to the Next Stage’s Buffer;

Inst. Resource

completed = true

request(Action)

Pipeline Stage

5 5

5

University of Michigan

InOrder CPU Basics: Resources (1)

5

§ A Resource represents a pipeline component that takes action
for an instruction
§  Instructions request an action from a resource
§  Resources confirm/deny the completion of that action

§  Implementations: resource.cc, resource_pool.cc, resources/
*.cc

§  A ResourceRequest (ResReq) transfers data between instruction and
resource

§  Resources are instantiated and accessed through the ResourcePool
interface

Inst.
Resource

Pipeline Stage
request(Action)

ResReq

completed = true
Resource Resource

Resource

ResourcePool

6 6

6

University of Michigan

InOrder CPU Basics: Resources (2)

6

§ Each resource defines the following parameters:
§  width – how many instructions that can be simultaneously processed
§  latency – cycles before the requested action is finished in the resource

§ Custom Resources derive from the Resource base class and
must also define the following:
§  enum Command { Action1, Action2, ... };
§  void execute(...);

§ CacheUnit::execute(...) pseudocode:
void CacheUnit::execute(...) {

 ...

 switch (Cache-Unit Command) {

 case InitiateRead:

 ...

 case InitiateWrite:

 ...

 }

...

}

7 7

7

University of Michigan

InOrder CPU Basics: Instruction Schedules

7

§  The ResourceSked class contains the list of action and
resource pairings for each instruction

§  Implementation: resource_sked.cc
§  The InOrderCPU creates a front-end and back-end schedule for each

instruction
§  Front-End Sked: Created in FirstStage, all instructions follow

this schedule (e.g., fetch and decode)
§  Back-End Sked: An instruction schedule based on the instruction

type (e.g., int, fp, ld/st, etc.)
§  The variable “BackEndStartStage” is defined in pipeline_traits.hh

Fetch Decode Execute Memory Writeback

Front-End Back-End

8 8

8

University of Michigan

Custom Resource Example

8

§ Goal: Predict the value of a source register when it is not
readily available from the register file (e.g. during a cache miss)

§ Plan: Create a “Simple Value Predictor” Resource

§  Keep a record of PC and source register values when instructions
graduate (commit)

§  Use this record when an instruction’s source register value isn’t ready…

§ Caveats:
§  How do we take care of misspeculation?
§  This is unrealistic in terms of implementation and we could do a lot

better at value prediction … but it’s just an example J

9 9

9

University of Michigan

Defining a Custom Resource (1)

9

§ Step 1: Derive SimpleValPredictor from Resource
§  Add ‘ValStore’ and ‘ValLookup’ Actions
§  Define “SimpleValPredictor::execute()” to use these actions

§  Hint: Use ‘resources/agen_unit.hh,cc’ as a code template

#ifndef SIMPLE_VAL_PRED_HH

#define SIMPLE_VAL_PRED_HH

...

class SimpleValPredictor : public Resource {

 ...

 enum Command {ValStore, ValLookup };

 void execute(int slot_num);

 ...

 struct SrcRegs {

 int r1, r2;

 };

 std::map<Addr, SrcRegs> valMap;

};

#endif

src/cpu/inorder/resources/simple_val_predictor.hh

...

void

SimpleValPredictor::execute(int slot_num) {

 ResourceRequest *req = reqs[slot_num];

 switch (req->cmd) {

 case ValStore:

 //Code to Save SrcRegs

 case ValLookup:

 //Code to Lookup SrcRegs

 };

 // Mark as Completed

 req->done();

}

...

src/cpu/inorder/resources/simple_val_predictor.cc

10 10

10

University of Michigan

Defining a Custom Resource (2)

10

§ Step 2: Make the InOrder CPU recognize SimpleValPredictor
§  Add header file to Resource list
§  Add identifier to PipelineTraits namespace
§  Instantiate SimpleValPredictor inside the ResourcePool constructor

...

#include src/cpu/inorder/resources/simple_val_predictor.hh

...

src/cpu/inorder/resource_list.hh

...

enum ResourceId {FetchSeq, ICache, ... , ValPredictor};

...

src/cpu/inorder/pipeline_traits.hh

ResourcePool::ResourcePool(InOrderCPU *_cpu, ThePipeline::Params *params) {

 ...

 resources.push_back(new SimpleValPredictor(“SimpleValPredictor”,

 ValPredictor, stage_width,

 0, params));

 ...

}

src/cpu/inorder/resource_pool.cc

11 11

11

University of Michigan

Defining a Custom Resource (3)

11

§ Step 3: Add SimpleValPredictor to Instruction Schedules
§  Add ‘ValLookup’ action to Execute Stage

§  Note: UseDefUnit, the resource responsible for managing the
Register File, would also need to be edited to use the predicted
value.

§  Add ‘ValStore’ action to Writeback Stage

InOrderCPU::createBackEndSked(DynInstPtr inst) {

 ...

 StageScheduler X(res_sked, stage_num++);

 StageScheduler M(res_sked, stage_num++);

 StageScheduler W(res_sked, stage_num++);

 ...

 // EXECUTE

 X.needs(ValPredictor, SimpleValPredictor::ValLookup);

 ...

 // WRITEBACK

 W.needs(ValPredictor, SimpleValPredictor::ValStore);

 ...

}

src/cpu/inorder/cpu.cc

12 12

12

University of Michigan

Extras: Complex Resource Handling

12

§ Examples of more complex resource handling can be found in
the “src/cpu/inorder/resources” directory
§  What if I need to pass extra information in my resource request?

§  First, try to save that information in the DynInst which is visible to
any Resource.

§  Derive a new Resource Request type
§  See UseDefRequest in “resources/use_def_unit.cc” and it’s

usage in InOrderCPU::createBackEndSked()

§  What if I want to define a multi-cycle resource?
§  Define ‘InitiateAction’ and ‘CompleteAction’ commands in your

resource so that you can split the execution amongst two requests.

§  Consider using these action commands in different stages to
hide latency.

§  See how this can be done by referencing the CacheUnit and/or
the MDU code.

13 13

13

University of Michigan

Extras: Custom Stats and Debugging

13

§ How do I add stats to my Resource?
§  Declare a “Statistics::” variable in your class and register it with the
regStats() function.

§  See resources/agen_unit.hh,cc for an example

§ Where do I add debugging information for my Resource?
§  Add a “DebugFlag” in src/cpu/inorder/SConscript

§  Make sure to include the header for your DebugFlag
§  This will get automatically generated via the SConscript definition

§  Use the DebugFlag in the standard gem5 DPRINTF messages:

#include “debug/SimpleValPredictor.hh”

...

DPRINTF(SimpleValPredictor, “<Insert Message Here>”);

...

14 14

14

University of Michigan

Fin.

14

