Customized InOrder CPU Modeling

Korey Sewell
University of Michigan, Ann Arbor
(Now at Qualcomm)

December 2", 2012



Customized InOrder CPU Modeling

Agenda
InOrder CPU Model Basics
Pipeline Stages
Resources
Instruction Scheduling
Custom Resource Example: “Simple Value Predictor”
Deriving a Custom Resource
Making a Resource Recognizable
Adding a Resource to an Instruction Schedule
Extras
Complex Resource Handling, Stats, and Debugging

University of Michigan



InOrder CPU Model Basics

The InOrder model was designed to be a generic, flexible
framework for CPU simulation:

The user defines the number of Pipeline Stages

The user defines the Resources to be used in the pipeline (e.g.
Branch Predictors, ALUs, etc.)

Each Instruction tells the current Pipeline Stage what resources it
needs to access before it can be sent to the next stage.

The full list of actions that an instruction needs from each resource
is called an Instruction Schedule

InOrder CPU Model

University of Michigan



InOrder CPU Basics: Pipeline Stages

The PipelineStage class provides a generic structure for
Instructions to communicate with resources

Implementation(s): pipeline stage.cc, first stage.cc

Special Case: FirstStage is a derived class whose sole purpose is to
create instructions for the pipeline

Pseudo code:

for each Instruction in the pipeline stage
for each Resource that an instruction needs to access

bool completed = request(Instruction, Resource, Action);

if (!completed)
Stall the Pipeline;
Stop Processing Instructions for this Cycle;

Send Instruction to the Next Stage’s Buffer;
Pipeline Stage

request(Action)
> Resource

€

completed = true

University of Michigan



InOrder CPU Basics: Resources (1)

A Resource represents a pipeline component that takes action
for an instruction

Instructions request an action from a resource
Resources confirm/deny the completion of that action

Implementations: resource.cc, resource pool.cc, resources/
*.CcC

A ResourceRequest (ResReq) transfers data between instruction and
resource

Resources are instantiated and accessed through the ResourcePool
interface

ResourcePool

Pipeline Stage
ResReq

request(Action)

>

Resource Resource
completed = true

University of Michigan 5

€




InOrder CPU Basics: Resources (2)

Each resource defines the following parameters:
width — how many instructions that can be simultaneously processed
latency — cycles before the requested action is finished in the resource

Custom Reso_urces derive from the Resource base class and
must also define the following:

enum Command { Actionl, ActionZ?2, ... };

vold execute(...);

CacheUnit::execute(...) pseudocode:

vold CacheUnit::execute(...) {

switch (Cache-Unit Command) {

case InitiateRead:

case InitiateWrite:

}

University of Michigan



InOrder CPU Basics: Instruction Schedules

The ReSOUL_”C_:eSked class contains the list of action and
resource pairings for each instruction

Implementation: resource sked.cc

The InOrderCPU creates a front-end and back-end schedule for each
instruction

Front-End Sked: Created in F'irstStage, all instructions follow
this schedule (e.g., fetch and decode)

Back-End Sked: An instruction schedule based on the instruction
type (e.g., int, fp, Id/st, etc.)

The variable “BackEndStartStage” is defined in pipeline_traits.hh

Fetch Decode | Execute Memory Writeback
I
I

Back-End

Front-End

University of Michigan



Custom Resource Example

Goal: Predict the value of a source register when it is not
readily available from the register file (e.g. during a cache miss)

Plan: Create a “Simple Value Predictor’” Resource

Keep a record of PC and source register values when instructions
graduate (commit)

Use this record when an instruction’s source register value isn’t ready...

Caveats:

How do we take care of misspeculation?

This is unrealistic in terms of implementation and we could do a lot
better at value prediction ... but it's just an example ©

University of Michigan 8



Defining a Custom Resource (1)

Step 1: Derive SimpleValPredictor from Resource
Add ‘ValStore’ and ‘ValLookup’ Actions
Define “SimpleValPredictor::execute()” to use these actions
Hint: Use ‘resources/agen_unit.hh,cc’ as a code template

src/cpu/inorder/resources/simple val predictor.hh

#ifndef SIMPLE VAL PRED HH
#define SIMPLE VAL PRED HH

class SimpleValPredictor : public Resource {

enum Command {ValStore, ValLookup };

void execute (int slot num);

struct SrcRegs {
int rl, r2;
}i
std: :map<Addr, SrcRegs> valMap;
Yy
#endif

University of Michigan

src/cpu/inorder/resources/simple val predictor.cc

void
SimpleValPredictor: :execute (int slot num) {
ResourceRequest *req = regs[slot num];
switch (reg->cmd) {
case ValStore:

//Code to Save SrcRegs
case ValLookup:

//Code to Lookup SrcRegs
i
// Mark as Completed
reg->done () ;



Defining a Custom Resource (2)

Step 2: Make the InOrder CPU recognize SimpleValPredictor
Add header file to Resource list
Add identifier to PipelineTraits namespace
Instantiate SimpleValPredictor inside the ResourcePool constructor

src/cpu/inorder/resource_list.hh

#include src/cpu/inorder/resources/simple val predictor.hh

src/cpu/inorder/pipeline traits.hh

enum ResourcelId {FetchSeq, ICache, ... , ValPredictor};

src/cpu/inorder/resource_pool.cc

ResourcePool: :ResourcePool (InOrderCPU * cpu, ThePipeline::Params *params) {
resources.push back(new SimpleValPredictor (“SimpleValPredictor”,

ValPredictor, stage width,

0, params)) ;

}

University of Michigan



Defining a Custom Resource (3)

Step 3: Add SimpleValPredictor to Instruction Schedules
Add ‘ValLookup’ action to Execute Stage

Note: UseDefUnit, the resource responsible for managing the

Register File, would also need to be edited to use the predicted
value.

Add ‘ValStore’ action to Writeback Stage

src/cpu/inorder/cpu.cc

InOrderCPU: :createBackEndSked (DynInstPtr inst)
StageScheduler X(res sked, stage num++);
StageScheduler M(res sked, stage num++);

StageScheduler W(res sked, stage num+t+);

// EXECUTE
X.needs (ValPredictor, SimpleValPredictor::VallLookup) ;

// WRITEBACK

W.needs (ValPredictor, SimpleValPredictor::ValStore);

University of Michigan 11



Extras: Complex Resource Handling

Examples of more complex resource handling can be found in
the “src/cpu/inorder/resources” directory

What if | need to pass extra information in my resource request?

First, try to save that information in the DynInst which is visible to
anyResource.

Derive a new Resource Request type

See UseDefRequest in “resources/use_def unit.cc” and it’s
usage in InOrderCPU: :createBackEndSked ()

What if | want to define a multi-cycle resource?

Define ‘InitiateAction’ and ‘CompleteAction’ commands in your
resource so that you can split the execution amongst two requests.

Consider using these action commands in different stages to
hide latency.

See how this can be done by referencing the CacheUnit and/or
the MDU code.

University of Michigan 12



Extras: Custom Stats and Debugging

How do | add stats to my Resource?

Declare a “Statistics::” variable in your class and register it with the
regStats () function.

See resources/agen unit.hh, cc for an example

Where do | add debugging information for my Resource?
Add a “DebugFlag” in src/cpu/inorder/SConscript

Make sure to include the header for your DebugFlag
This will get automatically generated via the SConscript definition
Use the DebugFlag in the standard gem5 DPRINTF messages:

#include “debug/SimpleValPredictor.hh”

DPRINTF (SimpleValPredictor, “<Insert Message Here>");

University of Michigan

13



14



