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BACKGROUND

� Kernel-based Virtual Machine (KVM)

‒ Linux kernel becomes a hypervisor

‒ Driver for user space communication

‒ IOCTL user level API

� KVM CPU model

‒ Sets up a virtual machine (VM), using KVM

‒ Runs code to be simulated inside the VM at hardware speeds

� Syscall Emulation (SE) mode

‒ Simulated user space code

‒ Emulated kernel space code
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WHY KVM IN SE MODE?

� Fast-forwarding at hardware speeds using KVM is a great capability

‒ Currently only available in FS mode

� Syscall Emulation (SE) mode has a number of advantages

‒ No need to set up disk images, boot kernel, etc.

‒ Debugging & analysis of simulated code is much easier

‒ Only your application code is running inside gem5

‒ No need to write complete functional device drivers for experimental devices

‒ In some environments, the loss of accuracy from not modeling the OS is tolerable

‒ Compute-bound applications

‒ I/O is done primarily through user-level operations

� Very valuable to be able to combine these
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KVM CPU MODEL

� Full-System mode behavior:

‒ gem5 loads a kernel image

‒ KVM CPU model starts executing the kernel image

‒ Simulated OS sets up and manages VM guest page tables within VM

‒ Simulated OS handles application exceptions (system calls, page faults) within VM

‒ Control returns to gem5 only on MMIO access or to process scheduled event

� Syscall-Emulation mode desired behavior:

‒ Execute just user space code in a VM

‒ Exit the VM when going to kernel space (system calls, page faults)

‒ Return to the VM when leaving the kernel space
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CHALLENGES

� Hardware virtualization requires native page tables for guest->host mapping

‒ SE layer currently uses a simple std::map

‒ Need to enable gem5 to build & manipulate native page tables in SE mode

� Need to set up CPU state (control regs etc.) for user-level execution

‒ KVM expects (non-existent) guest OS to set this state

� Need to redirect application page faults into SE layer

‒ Needed to grow stack on demand

‒ KVM wants to redirect these to (non-existent) guest OS

� Need to redirect system calls into SE layer

‒ Again, KVM lets the (non-existent) guest OS handle these
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NATIVE PAGE TABLES

� Reside in simulated physical memory

‒ walkable by the VM, during app simulation

‒ and by gem5 during the emulation of syscalls

� Compliant with ISA specifications

‒ refactored SE page table class to allow optional native page table implementation

‒ built template class to handle multi-level page tables, including x86 specialization
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EMULATING THE OS KERNEL: SETUP

� Getting the VM in a state which can execute user space code:

‒ added additional code and data segments for ring 0

‒ modified the GDT accordingly

� Enabling exception handling

‒ added Interrupt Description Table (IDT)

‒ changed the Task State Segment (TSS)

‒ added Interrupt Stack Table (IST)
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EMULATING THE OS KERNEL: HANDLING EXCEPTIONS

� Redirecting syscalls to SE layer

‒ created small native syscall handler passed to VM

‒ the handler triggers KVM exit through an MMIO operation

‒ gem5 emulates the syscall

� Redirecting page faults to SE layer

‒ created small native page-fault handler passed to VM

‒ the handler triggers KVM exit through an MMIO operation

‒ gem5 fixes the stack (the only demand paging scenario)
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RECAP
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CONCLUSION

� uses ISA native page tables shared with the VM

� sets the VM state as if an OS kernel just booted

� supports ISA native syscall and exception handling

IS IT POSSIBLE FOR A VM TO EXECUTE JUST USER SPACE CODE?

Indeed it is, now that gem5…
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between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or 
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