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ATOMIC MESSAGE INTERFACES IMPROVE PROTOCOL 
DEVELOPMENT 

§ Developing protocols is hard! 
–  Fundamentally coherence protocols are complex 

–  SLICC doesn’t let you cheat 

§ Unfortunately, SLICC often causes poor software engineering 

–  No good way to share code between protocols 
–  Often studies end up using “cut and paste” state machines 
–  Lots of duplicate code that is hard to maintain 

§ An alternative solution to split up the state machines is problematic 

§ Atomic message interfaces (AMIs) 
–  Simplify splitting state machines 

–  Remove the mandatory and optional queues 
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OUTLINE 

§ Review how SLICC state machines work today 

§ Brief example: Inclusive directory with non-inclusive cache 

– Software design decision: Split up the state machines? 

– Application of AMIs 

§ Other applications of AMI features 

– Remove the mandatory and optional queues 

– Replace trigger queues 
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ONE-SLIDE REVIEW: HOW STATE MACHINES WORK TODAY 
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CASE STUDY: INCLUSIVE DIRECTORY WITH NON-INCLUSIVE 
CACHE 
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DESIGN DECISION: ONE OR TWO CONTROLLERS 

One controller 
§ Advantages 

– Better fits current infrastructure 

§ Disadvantages 

– State explosion 

– Rigid & complicated 

Two separate controllers 
§ Advantages 

– Reduce defined states 

–  Flexibility 

§ Disadvantages 

– Dependency cycles 

– Unnecessary races & blocking 
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SOLUTION: ATOMIC MESSAGE INTERFACES (AMIs) 
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§ The same SLICC abstraction as current message communication 

– Message constructed and sent via enqueue() 

– AMI in_port trigger events 

–  Transitions are executed atomically 

§ Unique differences in behavior 

– AMI-triggered events are guaranteed to occur immediately after 
§ Essentially, multiple transitions are executed atomically and sequentially 

– Stalls checked before triggering events 
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AMI IMPLEMENTATION DETAILS 
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OTHER APPLICATIONS OF AMI FEATURES 

§ Remove the mandatory queue 

–  Leverage the publically callable in_port functions 

– Sequencer directly calls mandatory and optional q functions 

– Difficult to pipeline across the current sequencer-mandatory q interface 

– Symmetrically add latency on the port interface instead 

§ Replace trigger queues 
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CONCLUSIONS 

§ Atomic message interfaces (AMIs) 

– Maintain Ruby’s message abstraction  

– Guarantee AMI-triggered events occur immediately afterwards 

– Remove unnecessary races with splitting co-located controllers 

–  Facilitate simpler multi-controller systems → better code re-use 

§ Many implications 

– More flexible and simpler protocols 

–  Functional in_port interface may replace the mandatory queue 

–  Trigger intra-controller events as well 


