
1 | Simplifying Ruby with AMIs | December 2, 2012 | The gem5 User Workshop

SIMPLIFYING RUBY
PROTOCOLS WITH
ATOMIC MESSAGE

INTERFACES

2 | Simplifying Ruby with AMIs | December 2, 2012 | The gem5 User Workshop

ATOMIC MESSAGE INTERFACES IMPROVE PROTOCOL
DEVELOPMENT

§ Developing protocols is hard!
–  Fundamentally coherence protocols are complex

–  SLICC doesn’t let you cheat

§ Unfortunately, SLICC often causes poor software engineering

–  No good way to share code between protocols
–  Often studies end up using “cut and paste” state machines
–  Lots of duplicate code that is hard to maintain

§ An alternative solution to split up the state machines is problematic

§ Atomic message interfaces (AMIs)
–  Simplify splitting state machines

–  Remove the mandatory and optional queues

3 | Simplifying Ruby with AMIs | December 2, 2012 | The gem5 User Workshop

OUTLINE

§ Review how SLICC state machines work today

§ Brief example: Inclusive directory with non-inclusive cache

– Software design decision: Split up the state machines?

– Application of AMIs

§ Other applications of AMI features

– Remove the mandatory and optional queues

– Replace trigger queues

4 | Simplifying Ruby with AMIs | December 2, 2012 | The gem5 User Workshop

ONE-SLIDE REVIEW: HOW STATE MACHINES WORK TODAY

message
in_port

message
buffer

state + event
case

statement

action
action

transition

not
available

resource
test

available

not
available

resource
stall

resource
test

available

resource
stall

in_port
logic

+

current
state

event action protocol
stall

new state

5 | Simplifying Ruby with AMIs | December 2, 2012 | The gem5 User Workshop

CASE STUDY: INCLUSIVE DIRECTORY WITH NON-INCLUSIVE
CACHE

private
cache(s)

Core

private
cache(s)

Core

private
cache(s)

Core

private
cache(s)

Core

inclusive
directory

non-inclusive
shared cache

6 | Simplifying Ruby with AMIs | December 2, 2012 | The gem5 User Workshop

DESIGN DECISION: ONE OR TWO CONTROLLERS

One controller
§ Advantages

– Better fits current infrastructure

§ Disadvantages

– State explosion

– Rigid & complicated

Two separate controllers
§ Advantages

– Reduce defined states

–  Flexibility

§ Disadvantages

– Dependency cycles

– Unnecessary races & blocking

inclusive
directory

non-inclusive
shared cache

standard message
buffer interfaces

7 | Simplifying Ruby with AMIs | December 2, 2012 | The gem5 User Workshop

SOLUTION: ATOMIC MESSAGE INTERFACES (AMIs)

inclusive
directory

non-inclusive
shared cache

standard message
buffer interfaces

atomic message
interfaces

§ The same SLICC abstraction as current message communication

– Message constructed and sent via enqueue()

– AMI in_port trigger events

–  Transitions are executed atomically

§ Unique differences in behavior

– AMI-triggered events are guaranteed to occur immediately after
§ Essentially, multiple transitions are executed atomically and sequentially

– Stalls checked before triggering events

8 | Simplifying Ruby with AMIs | December 2, 2012 | The gem5 User Workshop

AMI IMPLEMENTATION DETAILS

message

in_port
logic

in_port
AMI

state + event
case

statement

resource
test

resource
test

action
action
action

new state

available

available

not
available

transition

not
available

resource
stall

resource
stall

+

current
state

event

accepting
state

yes

no
protocol

stall

AMI allowed

AMI in_port function call

9 | Simplifying Ruby with AMIs | December 2, 2012 | The gem5 User Workshop

OTHER APPLICATIONS OF AMI FEATURES

§ Remove the mandatory queue

–  Leverage the publically callable in_port functions

– Sequencer directly calls mandatory and optional q functions

– Difficult to pipeline across the current sequencer-mandatory q interface

– Symmetrically add latency on the port interface instead

§ Replace trigger queues

Core Ruby Port/
Sequencer

L1 Cache
Controller

Current Pipeline

m5 port
enqueue()

mandatory q

hitcallback (no timing)

Core Ruby Port/
 Sequencer

L1 Cache
Controller

Proposed Pipeline

m5 port
mandatory q function

hitcallback tim
in

g

10 | Simplifying Ruby with AMIs | December 2, 2012 | The gem5 User Workshop

CONCLUSIONS

§ Atomic message interfaces (AMIs)

– Maintain Ruby’s message abstraction

– Guarantee AMI-triggered events occur immediately afterwards

– Remove unnecessary races with splitting co-located controllers

–  Facilitate simpler multi-controller systems → better code re-use

§ Many implications

– More flexible and simpler protocols

–  Functional in_port interface may replace the mandatory queue

–  Trigger intra-controller events as well

