

ATOMIC MESSAGE INTERFACES IMPROVE PROTOCOL DEVELOPMENT

- Developing protocols is hard!
 - Fundamentally coherence protocols are complex
 - SLICC doesn't let you cheat
- Unfortunately, SLICC often causes poor software engineering
 - No good way to share code between protocols
 - Often studies end up using "cut and paste" state machines
 - Lots of duplicate code that is hard to maintain
- An alternative solution to split up the state machines is problematic
- Atomic message interfaces (AMIs)
 - Simplify splitting state machines
 - Remove the mandatory and optional queues

OUTLINE

- Review how SLICC state machines work today
- Brief example: Inclusive directory with non-inclusive cache
 - Software design decision: Split up the state machines?
 - Application of AMIs
- Other applications of AMI features
 - Remove the mandatory and optional queues
 - Replace trigger queues

ONE-SLIDE REVIEW: HOW STATE MACHINES WORK TODAY

CASE STUDY: INCLUSIVE DIRECTORY WITH NON-INCLUSIVE CACHE

DESIGN DECISION: ONE OR TWO CONTROLLERS

One controller

- Advantages
 - Better fits current infrastructure
- Disadvantages
 - State explosion
 - Rigid & complicated

Two separate controllers

- Advantages
 - Reduce defined states
 - Flexibility
- Disadvantages
 - Dependency cycles
 - Unnecessary races & blocking

SOLUTION: ATOMIC MESSAGE INTERFACES (AMIs)

- The same SLICC abstraction as current message communication
 - Message constructed and sent via enqueue ()
 - AMI in port trigger events
 - Transitions are executed atomically
- Unique differences in behavior
 - AMI-triggered events are guaranteed to occur immediately after
 - Essentially, multiple transitions are executed atomically and sequentially,
 - Stalls checked before triggering events

AMI IMPLEMENTATION DETAILS

OTHER APPLICATIONS OF AMI FEATURES

- Remove the mandatory queue
 - Leverage the publically callable in port functions
 - Sequencer directly calls mandatory and optional q functions
 - Difficult to pipeline across the current sequencer-mandatory q interface
 - Symmetrically add latency on the port interface instead

Replace trigger queues

CONCLUSIONS

- Atomic message interfaces (AMIs)
 - Maintain Ruby's message abstraction
 - Guarantee AMI-triggered events occur immediately afterwards
 - Remove unnecessary races with splitting co-located controllers
 - Facilitate simpler multi-controller systems → better code re-use
- Many implications
 - More flexible and simpler protocols
 - Functional in port interface may replace the mandatory queue
 - Trigger intra-controller events as well

