
1

dist-gem5 Architecture

Illinois: Mohammad Alian, Daehoon Kim, Prof. Nam Sung Kim

ARM: Gabor Dozsa, Stephan Diestelhorst, Nikos Nikoleris, Radhika Jagtap

Tutorial at International Symposium on Computer Architecture (ISCA), Toronto, Canada

25 June 2017

2

▪ Definition

▪ A cluster of computers that communicate and interact with each other by passing messages over

the network to process given tasks.

▪ Examples

▪ Datacenters, supercomputers

Distributed Computer Systems

The IBM Blue Gene/P supercomputer "Intrepid"

at Argonne National Laboratory runs 164,000 processor

cores in 40 racks/cabinets connected by a high-speed 3-

D torus network.

A Google datacenter

3

▪ To maximize performance and/or energy-efficiency, we must capture the intricate

interplay amongst computers and their HW/SW sub-systems, especially due to

communications and interactions w/ each other by passing messages over the network

Exploring and Optimizing Distributed Computer Systems

Request Response

ResponseRequest

Network

Clients

Servers

0

0.5

1

1.5

2

2.5

3

3.5

0.0

0.2

0.4

0.6

0.8

1.0

0.14 0.19 0.24

F
re

q
u

e
n

c
y

 (
G

H
z
)

U
ti

li
z
a
ti

o
n

Time (s)

BW(rx)

BW(tx)

U(core)

F(core)

4

Using physical computers

▪ Advantage

▪ Fast evaluations for large-scale distributed computer systems

▪ Disadvantage

▪ Limited design space exploration (unable to explore distributed computer systems based on future

processor and computer sub-systems architectures that have not been developed yet)

Using queuing-theoretic models

▪ Advantage

▪ Simple and fast evaluations for large-scale distributed computer systems

▪ Disadvantage

▪ Inaccurate/misleading evaluations (unable to capture complex interplay b/w HW/SW sub-systems of

computers)

Past Methods Exploring Distributed Computer Systems [1]

5

Using existing (full-system) simulators

▪ Advantage

▪ More flexible design space exploration than physical computer systems

▪ More precise evaluation than queuing-theoretic models

▪ Disadvantage

▪ gem5: limited scalability w/ slow evaluation (legacy gem5)

▪ Not flexible (SST + gem5)

▪ Proprietary and limited to x86 (COTSON)

Past Methods Exploring Distributed Computer Systems [2]

6

▪ Evaluating performance and power dissipation of a distributed system

▪ Complex interplay among system components at scale

▪ Demanding a full-system, cycle-level simulator which is fast enough to simulate a large-

scale computer system

▪ Enabling distributed simulation:

▪ Simulation of a distributed computer

▪ system w/ many simulation hosts

dist-gem5

scale
OS

ISAs
caches

memory

network

devices

performance
Power

cores

7

▪ Product of excellent synergistic collaboration b/w industry and academia

▪ Integrating the best features of concurrently developed multi-gem5 from ARM and pd-gem5 from U.

of Illinois for fast and deterministic simulations of distributed computer simulations

History of dist-gem5 Development

pd-gem5 multi-gem5

U. of Illinois ARM Research

dist-gem5

[Best Paper Finalist] M. Alian, et al., “dist-gem5: Distributed Simulation of Computer Clusters,”
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2017.

M. Alian, et al., pd-gem5: Simulation infrastructure for parallel/distributed
computer systems. IEEE Computer Architecture Letters, vol: 15, no: 1, 2016.

8

Example of Research w/ dist-gem5

Datacenter power management algorithm

▪ Desired P/C-state governor

▪ react to change in core utilization in a timely manner

▪ Approaches

▪ predict changes in core utilization

▪ core utilization is highly correlated w/ network activity

▪ Hide P/C-state transition latency

▪ overlap P/C-state transition w/ packet reception

and processing

8

BW(rx)

U(core)

MC

DMA

Interrupt

Handler

SoftIRQ

1 2 n
...

rx_desc_ring

s

k

b

Network

Stack

DRAM

s

k

b

s

k

b

Copy to

User

p

k

t

NIC

NIC

CPU

DRAM
RCPCIe

Channel

[Nominated for the Best Paper Award] M. Alian, et al. “NCAP: Network-Driven, Packet

Context-Aware Power Management for client-server architecture. IEEE International

Symposium on High-Performance Computer Architecture (HPCA), February 2017.

9

▪ Detect high rate of “RX” latency-critical packets w/ simple HW in NIC

▪ NIC will notify CPU by sending an interrupt to:

▪ activate cores

▪ boost frequency

▪ disable menu governor

▪ overlap P/C state transition time with packet reception and processing

NCAP power management – BW(Rx) surge

Id
le

 A

c
ti

v
e

Max Freq

Deep Idle
RR

9

eth TCP payload

0 66

G E T / a . h t m ...

Template {GET, POST, XY }2

compare

C1

LLC

IO

M
e
m
o
ry

C0

D
is
k

N
IC

10

Other Promising Research Directions

▪ Exploring HW/SW cross-layer approaches for datacenter computers and their sub-

systems

▪ Exploiting information from network HW/SW layers as hints for efficient management of computer

resource management (e.g., prefetching pages from slow to fast memory in hybrid memory system)

▪ Off-loading simple data-intensive operations to network interface cards (NICs)

▪ Developing efficient evaluation methodologies for large-scale distributed computer

systems

▪ Exploring systematic hybrid evaluation approaches judiciously mixing queuing-theoretic modeling

and dist-gem5-based simulation approaches for efficiently evaluating a VERY large-scale distributed

computer systems (e.g., obtaining detailed parameters for queuing-theoretic analytical model using

dist-gem5)

11

▪ Introduction (15min)

▪ Overview of gem5 (45 min)

▪ --- 15 min Break ---

▪ dist-gem5 deep-dive (60 min)

▪ Packet forwarding

▪ Synchronisation

▪ Checkpointing

▪ Deterministic execution

▪ --- 15 min Break ---

▪ Evaluation (30 min)

▪ Validation and simulation scalability

▪ Demo

Programme

12

Michigan m5 + Wisconsin GEMS = gem5

“The gem5 simulator is a modular platform for computer-system architecture research,

encompassing system-level architecture as well as processor microarchitecture.”

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower,

T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. 2011.

The gem5 simulator. SIGARCH Comput. Archit. News 39, 2 (August 2011), 1-7.

DOI=http://dx.doi.org/10.1145/2024716.2024718

What is gem5?

13

Users and contributors

▪ Widely used in academia and industry

▪ Contributions from

▪ ARM, AMD, Google,…

▪ Wisconsin, Cambridge, Michigan, BSC, …
0

200

400

600

800

1000

1200

2011 2012 2013 2014 2015 2016

Publications with gem5

14

Level of detail

▪ HW Virtualization

▪ Very no/limited timing

▪ The same Host/Guest ISA

▪ Functional mode

▪ No timing, chain basic blocks of instructions

▪ Can add cache models for warming

▪ Timing mode

▪ Single time for execute and memory lookup

▪ Detailed mode

▪ Full out-of-order, in-order CPU models

▪ Hit-under-miss, reodering, …

µarch Exploration

HW Validation

Perf. Validation

Cycle Accurate

1–50 KIPS

RTL simulation

High-level perf./power

Architecture exploration

Approximately Timed

0.2–3 MIPS

gem5

Loosely Timed

50–200 MIPS

Qemu

SW Dev

HW Virt.

gem5 + kvm

GIPS

15

Why gem5?

▪ Runs real workloads

▪ Analyze workloads that customers use and care about

▪ … including complex workloads such as Android

▪ Comprehensive model library

▪ Memory and I/O devices

▪ Full OS, Web browsers

▪ Clients and servers

▪ Rapid early prototyping

▪ New ideas can be tested quickly

▪ System-level impact can be quantified

▪ Can be wired to custom models

▪ Add detail where it matters, when it matters!

Ubuntu (Linux 4.x) Android Nougat

But not a microarchitectural

model out of the box!

16

When not to use gem5

▪ Performance validation

▪ gem5 is not a (out of the box) cycle-accurate microarchitecture model!

▪ This typically requires more accurate models such as RTL simulation.

▪ Commercial products such as ARM CycleModels operate in this space.

▪ Core microarchitecture exploration

▪ Only do this if you have a custom, detailed, CPU model!

▪ gem5’s core models were not designed to replace more accurate microarchitectural models.

▪ To validate functional correctness or test bleeding-edge ISA improvements

▪ gem5 is not as rigorously tested as commercial products.

▪ New (ARMv8.0+) or optional instructions are sometimes not implemented

▪ Commercial products such as ARM FastModels offer better reliability in this space.

17

Getting Started with gem5

18

Building gem5

▪ Guest architecture

▪ Several architectures in the source

tree.

▪ Most common ones are:

▪ ARM

▪ NULL – Used for trace-drive simulation

▪ X86

▪ Optimization level:

▪ debug: Debug symbols, no/few

optimizations

▪ opt: Debug symbols + most

optimizations

▪ fast: No symbols + even more

optimizations

$ git clone http://repo.gem5.org/gem5

$ scons build/ARM/gem5.opt

19

Example disk images

▪ Example kernels and disk images can be downloaded from gem5.org/Download

▪ This includes pre-compiled boot loaders

▪ Old but useful to get started

▪ For example download and extract:

▪ wget http://www.gem5.org/dist/current/arm/aarch-system-2014-10.tar.xz

▪ mkdir dist; cd dist

▪ tar xvf ../aarch-system-2014-10.tar.xz

▪ Set the M5_PATH variable to point to this directory:
▪ export M5_PATH=/path/to/dist

▪ Most example scripts try to find files using M5_PATH

▪ Kernels/boot loaders/device trees in ${M5_PATH}/binaries

▪ Disk images in ${M5_PATH}/disks

20

Running an example script

▪ Simulates a bL system with 1+1 cores

▪ Using the ‘timing’ CPU type: an OoO + InO configuration

▪ Alternative: ‘atomic’ - a functional ‘atomic’ CPU model

$ build/ARM/gem5.opt configs/example/arm/fs_bigLITTLE.py \

--disk your_disk_image.img \

--kernel path/to/vmlinux \

--dtb $PWD/system/arm/dt/armv8_gem5_v1_big_little_1_1.dtb \

--cpu-type timing

21

System Overview

22

Basic models in gem5

23

• Some timing

• Caches

• No BPs

• Fast

• Some timing

• Caches

• Limited BPs

• Fast

• Full timing

• Caches

• Branch predictors

• Slow

• No timing

• No caches

• No BP

• Really fast

CPU models overview

BaseCPU

BaseKvmCPU TraceCPUBaseSimpleCPU

AtomicSimpleCPU

TimingSimpleCPU

DerivO3CPU MinorCPU

X86KvmCPU

ArmV8KvmCPU

24

Caches

▪ Cache model with several components:

▪ Cache: request processing, miss handling, coherence

▪ Tags: data storage and replacement (LRU, Random,

etc.)

▪ Prefetcher: N-Block Ahead, Tagged Prefetching,

Stride Prefetching

▪ MSHR: track pending/outstanding requests

▪ WriteQueue: track writebacks

▪ Parameters: size, hit latency, block size, associativity,

number of MSHRs (max outstanding requests)

• Tags (replacements)

• Data

• Prefetchers

BaseCache

Cache

25

Memory controllers

AbstractMemory

• Fixed latency (w/

variance)

• Fixed throughput (w/

request throttling)

SimpleMemory

• Memory controller

model: DDRx, LPDDRx,

WideIO, HBM etc

• DRAM: ranks, banks,

columns

• Timing parameters:

• tRCD, tCL, tRP, tBURST,

tRFC, tREFI, tTAW/tFAW

DRAMCtrl

26

Ports, Masters and Slaves

▪ Components (MemObjects) are connected through master and slave ports

▪ A master port always connects to a slave port (e.g. CPU’s master port to cache’s slave port)

▪ An interconnect module at least one of each

▪ Similar to TLM-2 notation

CPU

memory0

bus

memory1

Master

module

Interconnect

module

Slave

module

Slave portMaster port

D

$

I$

27

Background

28

Discrete event based simulation

▪ Discrete: Handles time in discrete steps

▪ Each step is a tick

▪ Usually 1THz in gem5

▪ Simulator skips to the next event on the timeline

Time

Event handler

Event handlerMyObj::startup()
Schedule

Call

29

Example: Cache Reques

▪ Event-driven

▪ no activity -> no clocking

▪ event queue

▪ Deterministic

▪ fixed random number seed

▪ no dependence on host addresses

▪ Multi-Queue

▪ multiple workers

event queue

cache lookup

ti
m

e

curTick

cache response

Cache Model

30

▪ Switching modes
▪ (kvm +) functional + timing / detailed

▪ Checkpoints
▪ boot Linux -> checkpoint

▪ run multiple configurations in parallel

▪ run multiple checkpoints in parallel

▪ Multi-threading
▪ multiple queues

▪ multiple workers execute events

▪ data sharing and tight coupling limits speedup

▪ Multi-processed gem5
▪ for design space explorations

Accelerating gem5

31

Checkpointing

▪ Any simulation object with state, needs to be written to the checkpoint

▪ Checkpointing takes place on a drained simulator

▪ Draining ensures that microarchitectural state is flushed

▪ Models may need to flush pipelines and wait for outstanding requests to finish.

32

Creating a checkpoint

Trigger checkpointing

• Script call:
m5.checkpoint(“my.cpt”)

Drain the simulator

• Ensures a well-defined
architectural state

• Flushes CPU pipelines

• Writes back caches

Serialize objects

• MyObject::serialize(
CheckpointOut&)

33

Restoring from a checkpoint

Instantiation

• Uses a factory method:
MyObjectParams::create()

Restore architectural
state

• MyObject::unserialize(
CheckpointIn&)

Start model

• MyObject::startup()

Resume system

• MyObject::drainResume()

34

Draining

Script requests draining

All objects

drained

Call SimObject::drain()

Done

No

Yes

Simulate until

signalDrainDone()

• Flush internal state

• Stop producing new

messages

35

15 min break

36

▪ Introduction (15min)

▪ Overview of gem5 (45 min)

▪ --- 15 min Break ---

▪ dist-gem5 deep-dive (60 min)

▪ Packet forwarding

▪ Synchronisation

▪ Checkpointing

▪ Deterministic execution

▪ --- 15 min Break ---

▪ Evaluation (30 min)

▪ Validation and simulation scalability

▪ Demo

Programme

37

▪ Design space exploration for future HPC systems

requires simulators to cope with scalable benchmarks

▪ e.g. MPI proxy apps from co-design centers (Lulesh,

CoMD,…)

▪ Scale out efficiency related research questions

▪ What would be the performance implications of using

better/worse network links, NICs, etc. ?

▪ What would be the optimal end-to-end latency of the

system for a particular parallel application ?

▪ Enable gem5 to simulate distributed memory

systems on real clusters

The Problem

Distributed Memory

Message Passing

Address Space

Process

38

Host #1

Distributed gem5 Simulation – High Level View

Host #1

simulated

system

#1

Host #2

Host #3

Packet

forwarding

▪ gem5 processes modeling full systems run in parallel

on a cluster of host machines

▪ Packet forwarding engine

▪ Forward packets among the simulated systems

▪ Synchronize the distributed simulation

▪ Simulate network topology

gem5 process

host machine

simulated

system

#2

simulated

system

#3

39

Core Components

Packet forwarding
Distributed

checkpointing

Synchronisation

Simulated network

40

Core Components

Packet forwarding
Distributed

checkpointing

Synchronisation

Simulated network

41

Packet Forwarding

real host#1

gem5#1

simulated

system#1

simulated

NIC real

NIC

real host#2

gem5#2

simulated

system#2

simulated

NICreal

NIC

Simulated packet is

embedded into a real

world message

42

Asynchronous processing of incoming messages

▪ simulation thread (main thread)

▪ process/insert events in the event queue

▪ in case of send pkt event, encapsulate the simulated

Ethernet packet in a message and send it out

▪ receiver thread

▪ create for each gem5 process

▪ waits for incoming packets

▪ creates a recv pkt event and insert it to the event

queue

eventQ
simulation

thread
send pkt

recv pkt

physical host

gem5 process

receiver

thread

phys

NIC

43

real host

▪ Simulation thread (aka main())

▪ Part of vanilla gem5

▪ Process events in the event queue

(and inserts new events in the queue)

▪ In case of a ‘send frame’ event

encapsulates the simulated Ethernet

frame in a message and send it out

▪ Receiver thread

▪ Created for each dist-gem5 process

▪ Waits for incoming messages

▪ Create a ‘receive frame’ event for

each incoming message and insert it in

the event queue

Asynchronous Processing of Incoming Messages

gem5 process

simulation

thread

real

NIC

event queue

send frame

receive frame

receiver

thread

...

44

▪ What is the correct tick for the receive event?

▪ lat: simulated link latency

▪ bw: simulated link bandwidth (bytes/tick)

▪ size: simulated packet size (bytes)

receive tick = send tick + lat + size / bw

▪ For accurate simulation, we *must* have

▪ Receive tick >= curTick() when the receiver gem5 gets the simulated packet

▪ Receiver gem5 can schedule the receive event for the simulated NIC

Simulation Accuracy and Packet Forwarding

Head

Tail

event queue

ti
m

e

curTick

receive frame

45

Core Components

Packet forwarding
Distributed

checkpointing

Synchronisation

Simulated network

46

▪ Sender and receiver gem5 simulations progress independently of each other

▪ Receiver may have less events to process => can run ahead of sender too much (in wall clock time)

Synchronisation – why do we need this?

Problem

gem5#0

gem5#1

Send tick

Actual receive tick

link latency

Desired receive tick

when message arrives,

desired receive tick < curTick()

47

▪ Sender and receiver gem5 simulations progress independently of each other

▪ Receiver may have less events to process => can run ahead of sender too much (in wall clock time)

▪ curTick() may already be larger than the desired receive tick when message arrives

▪ Synchronisation using a periodic “barrier” termed global sync event

▪ Receiver and sender gem5 simulations wait for each other to complete global sync

▪ curTick() in sender and receiver are kept “close enough” at any point in (wall clock) time

▪ Synchronisation incurs overhead

▪ Try to do as few global sync as possible while still maintain accuracy

Synchronisation – why do we need this?

Problem

Solution

48

Accurate Packet Forwarding

Wall clock time

q : interval for periodic

global synchronisation

(quantum)

n : simulated network link

latency

q ≤ n

optimal q: q == n for

any fixed n

gem5#0

gem5#1

gem5#0

gem5#1

q
Send tick

Packet arrival wall

clock time

Desired delivery

tick

n

q q

global sync

49

▪ Simulation progress gets stopped at each sync

event in each gem5 process

▪ Simulated compute node

▪ Sends out ‘synq request’ message

▪ Waits until ‘sync ack’ message comes back

▪ Simulated switch

▪ Waits until it receives a ‘sync request’ message

▪ Broadcasts out ‘sync ack’ message

Compute Nodes, Switch and Synchronisation

compute

node

gem5

Ethernet

switch

gem5

compute

node

gem5

compute

node

gem5

50

▪ A global sync event is scheduled every quantum (q ticks) in each gem5 process

The Global Sync Event

▪ The process() method in a compute node

▪ sends out ‘sync request’ messages for each

simulated link

▪ waits on a condition variable to get notified

about completion by the receiver thread

▪ The process() method in a switch

▪ waits for completion notification from the

receiver thread

▪ sends out ‘sync ack’ messages for each

simulated link

▪ Receiver thread keeps processing incoming messages while simulation thread is blocked

▪ creates receive events in the event queue for simulated Ethernet frames

▪ notifies blocked simulation thread when ‘sync

ack’ messages arrive

▪ notifies blocked simulation thread when

‘sync request’ messages arrive

51

▪ We assume that a single compute node gem5 simulation is deterministic

▪ Ordering and speed of dist-gem5 messages in real world

▪ Speed of gem5 processes (relative to each other) may vary

▪ Communication speed among gem5 process may vary

▪ Global sync guarantees deterministic packet forwarding

▪ sync quantum <= simulated link latency

▪ global sync is a message barrier

Deterministic Execution Issues

52

: message

delivery in

wall clock

time

Global Sync and Deterministic Packet Forwarding

gem5#0

gem5#1

gem5#0

gem5#1

p
send tick#1

receive tick#1
n

p

global sync

q : global sync

period in ticks

(quantum)

n: simulated

link latency in

ticks

gem5#2 gem5#2

n receive

tick#2

send tick#2

wall clock time

▪ Receive tick for a simulated

packet may not fall within the

same quantum which the

message gets received in

▪ A message is always gets sent

and received within a single

quantum

53

Global Sync and Deterministic Packet Forwarding (cont.)

Pre-condiction Invariant across multiple runs

quantum <= simulated link latency

Receive order of messages within the same

quantum does not matter

The sorted list of receive ticks falling within the

active quantum will not change

global sync is a message barrier
Each message will “happen” in exactly the

same quantum across different runs

54

Core Components

Packet forwarding
Distributed

checkpointing

Synchronisation

Simulated network

55

▪ Checkpoint support for dist-gem5 relies on the mainline gem5 checkpoint support

▪ Each gem5 process of a dist-gem5 run creates its own checkpoint

▪ dist-gem5 adds an extra co-ordination layer to ensure correctness

▪ No in-flight message may exist among gem5 processes when the distributed checkpoint is taken

Distributed Checkpointing

m5 checkpoint
pseudo inst

exitSimLoop() drain() serialize()

m5 checkpoint
pseudo inst

global
sync

exitSim
Loop()

drain()
global
sync

serialize()

dist-gem5 checkpoint co-ordination

56

Distributed Checkpointing (cont.)

▪ Checkpoint can only be initiated at a periodic global sync

▪ Simplifying implementation without sacrificing usability

Checkpoint flavour collaborative

checkpoint

immediate checkpoint

Condition all compute nodes signal

intent

at least one compute node

signals intent

Example use case Instrumented MPI

application source code to

take a checkpoint at the

MPI_barrier() before ROI

Taking a checkpoint from

the bootscript before

starting an MPI application

(i.e. before calling ‘mpirun’)

57

Distributed Checkpointing (cont.)

▪ Collaborative checkpoint

▪ In practice the checkpoint is taken “near” an application barrier (e.g. MPI_Barrier() or mpirun)

▪ When all processes hit the barrier in the application code => desired application state is captured

even if we allow checkpoint writes only at global sync

▪ Immediate checkpoint

▪ A compute node gem5 processes signals its intention to take a checkpoint

▪ ‘m5 checkpoint’ pseudo instruction => ‘need checkpoint’ meta info in the next ‘sync request’ message

▪ Switch gem5 process can “command” to write a checkpoint

▪ ‘write checkpoint’ meta info in the ‘sync ack’ message => exitSimLoop() in all gem5 processes

58

Writing Checkpoint

draining

gem5#0

gem5#1

Wall clock time

p

writing

checkpoint

p

global sync

d0

dist checkpoint starts

d1

q – d0

q : sync quantum ticks

d0, d1: drain ticks

▪ Distributed checkpoint can start

only at a global sync

▪ Draining may require different

number of ticks in each gem5

▪ After drain is complete, in-flight

messages are flushed with an extra

global sync

▪ Global sync implements both an

execution and a data (message)

barrier

q – d1

59

Restoring from Checkpoint

Wall clock time

global sync

q’ : sync quantum ticks

d0, d1 : drain ticks

align

ticks

restoring
from

checkpoint

d0

d1

q’

q’

d’

draining

▪ Checkpoint might be written at

different ticks in different gem5

processes

▪ Extra global sync to align the ticks:

d0 + d’ = d1

▪ Global sync delivers the max tick

value to all gem5 processes

▪ Global sync period may change at

restore

▪ Same checkpoint can be used to

explore different network link

latency/bandwidth effects

60

Writing Checkpoint

draining

gem5#0

gem5#1

Wall clock time

p

writing

checkpoint

p

global sync

d0

dist checkpoint starts

d1

q : sync quantum ticks

d0, d1: drain ticks

▪ Distributed checkpoint can

start only at a global sync

▪ Draining may require different

number of ticks in each gem5

▪ After drain is complete, in-flight

messages are flushed with an

extra global sync

▪ Global sync implements both

an execution and a data

(message) barrier

61

global sync

align

ticks

Restoring from Checkpoint

draining

gem5#0

gem5#1

Wall clock time

p

writing

checkpoint

p

global sync

d0

dist checkpoint starts

d1

q’ : sync

quantum
▪ Checkpoint might be written at

different ticks in different gem5

processes

▪ Extra global sync to align ticks:

d’ = d1- d0

▪ Global sync delivers the max

tick value to all gem5

processes

▪ Global sync period may change

at restore

▪ explore different network

link latency/bandwidth effects

q’

q’

Resume from distributed
checkpoint

d’

62

▪ User is allowed to change simulated link parameters when restoring from a checkpoint

▪ Same checkpoint can be used to explore different network link latency/bandwidth effects

▪ Global sync period may change at restore (if the simulated link latency change)

▪ Checkpoint may contain simulated packets to get received in the future

▪ Receive ticks for such packets are adjusted to reflect the change of the simulated link parameters

Restoring from Checkpoint (cont.)

63

Core Components

Packet forwarding
Distributed

checkpointing

Synchronisation

Simulated network

64

Architecture of the Simulated Ethernet Switch

▪ Interface (per port)

▪ Input and output packet queues

▪ Connects to DistEtherLink (or EtherLink)

▪ EtherFabric

▪ Models a crossbar connecting input and

output ports

▪ ForwardEngine

▪ Moves packets from input queues to

output queues

▪ Schedules new attempt in the future in

case of contention

▪ Has a map of MAC addresses to ports

65

physical host #1

physical host #3

physical host #2

physical switch

phys

NIC#1

phys

NIC#

2

phys

port1

phys

port2

phys

port3

phys

NIC#3

dist-gem5 architecture – packet forwarding

66

physical host #1

physical host #3

physical host #2

physical switch

phys

NIC#1

phys

NIC#2

phys

port1

phys

port2

phys

port3

phys

NIC#3

dist-gem5 architecture – packet forwarding

gem5 #1

simulated

system #1

sim

NIC

gem5 #3

simulated switch

gem5 #2

simulated

system #2

sim

NIC

sim

port

0

sim

port

1

67

physical host #1

physical host #3

physical host #2

physical switch

phys

NIC#1

phys

NIC#2

phys

port1

phys

port2

phys

port3

phys

NIC#3

gem5 #1

simulated

system #1

sim

NIC

gem5 #3

simulated switch

gem5 #2

simulated

system #2

sim

NIC

sim

port

0

sim

port

1

dist-gem5 architecture – packet forwarding

simulated packets are

embedded into host

TCP/IP packets

sim pkt

TCP sim pkt

sim pktTCP sim pkt

sim pkt

68

15 min break

69

▪ Introduction (15min)

▪ Overview of gem5 (45 min)

▪ --- 15 min Break ---

▪ dist-gem5 deep-dive (60 min)

▪ Packet forwarding

▪ Synchronisation

▪ Checkpointing

▪ Deterministic execution

▪ --- 15 min Break ---

▪ Evaluation (30 min)

▪ Validation and simulation scalability

▪ Demo

Programme

70

Validation – network latency and bandwidth

▪ iperf (left) and memcahed (right)

▪ follows the behavior of physical setup

▪ 17.5% lower response time for memcached

0.0

0.3

0.6

0.9

1.2

1.5

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

L
a
te

n
c
y
 (

m
s
)

Bandwidth (Gbps)

dist-gem5

phys

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 5 10 20 30 40 50 60 70 80 90 95

L
a
te

n
c
y
 (

m
s
)

memcached Distribution Percentile

dist-gem5

phys

71

Speedup – simulation time reduction

▪ running httperf on each simulated node sending

fixed number of requests to a unique simulated

node (apache server)

▪ compared with single-threaded-gem5

▪ dist-gem5 simulating 63 nodes on 16 physical

hosts is

▪ 83.1 faster than single-threaded-gem5

▪ 12.8 faster than parallel-gem5

2.7
6.3

21.8

36.0

83.1

2.7 3.7
6.6 6.0 6.5

0

10

20

30

40

50

60

70

80

90

3 7 15 31 63

S
p

e
e
d

u
p

 (
 N

o
rm

.
s
in

g
le

-t
h

re
a

d
e
d

-g
e

m
5
)

Number of Simulated Nodes

dist-gem5 parallel-gem5

speedup of parallel-gem5 saturates!

72

Scalability – simulation time vs. simulated cluster size

▪ simulation time increase for simulating 64 vs. 3 nodes:

▪ 57.3 for Single-threaded-gem5

▪ 23.9 for parallel-gem5

▪ 1.9 for dist-gem5

1.4
1.9

1.9

3.9

11.2

23.9

1.0

2.6

9.4

25.0

57.3

1.0

10.0

100.0

0 10 20 30 40 50 60 70

N
o

rm
a
liz

e
d

S

im
u

la
ti

o
n

T

im
e

Number of Simulated Nodes

dist-gem5 parallel-gem5 single-threaded-gem5

dist-gem5 scales well!

73

Synchronization overhead

▪ sweep synchronization quantum size

▪ # of http req remains near constants

▪ maximum 2.6% variance

▪ almost the same amount of work done at each

quantum size

▪ simulation time improvement

▪ 4.9% from 0.5 μs to 1 μs

▪ 15.7% from 0.5 μs to 128 μs

0

4

8

12

16

20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.5 1 2 4 8 16 32 64 128

N
u

m
b

e
r

o
f

R
e
q

u
e
s
ts

 (
K

 R
e
q

)

N
o

rm
a
liz

e
d

S

im
u

la
ti

o
n

T

im
e

Synchronization Quantum Size (μs)

Simulation Time Req#

dist-gem5 synchronization is efficient!

74

▪ What is LULESH?

▪ Livermore Unstructured Lagrange Explicit Shock

Hydrodynamics

▪ A widely studied proxy application in DOE co-design

efforts for exascale

▪ Modeling hydrodynamics, which describes the motion of

materials relative to each other when subject to forces

▪ Highly simplified application that represents a typical

hydrocode

▪ Ported to a number of programming models (MPI,

OpenMP, CUDA, Chapel, Charm++, etc.)

Case study : Network sensitivity of LULESH

75

▪ Compute node config

▪ ARMv8 single core CPU @ 1GHz, 2

GB DRAM

▪ Ethernet NIC

▪ Switch config

▪ 27-port Ethernet xbar

▪ 1KiB input/output buffer per port

▪ LULESH command line

▪ mpirun –n 27 lulesh-mpi –s 5 –i 30

▪ -s : input data size per MPI process

▪ -i : number of iterations in the main

compute loop

Running LULESH on distributed gem5

76

▪ Source code instrumentation to capture ROI

▪ ‘m5 checkpoint’ pseudo instruction was inserted before main compute loop

▪ ‘m5 exit’ pseudo instruction was inserted after the main compute loop

▪ ‘checkpoint’ and ’exit’ instructions can be collaborative : action is only taken when all participating

gem5 processes complete the pseudo instruction

▪ Simulation runs

1. Fast forwarding (atomic CPU) until the MPI_Barrier (before the ROI) was hit in all 27 processes

2. Executing ROI in detailed (O3 CPU) mode by restoring from checkpoint

▪ Change Ethernet link parameters at resume to explore latency/bandwith sensitivity

Running LULESH on distributed gem5 (cont.)

Ethernet link config latency (us) bandwidth (Gbps)

1. 50 10

2. 5 10

3. 50 1

4. 5 1

77

LULESH performance results – small input data size

▪ Performance is measured as run

time of ROI

▪ number of cycles from gem5 stats

▪ max of the 27 compute nodes

▪ Results are normalized to the 1st

config

▪ 10Gbps bandwidth and 50us latency

▪ 5us link latency reduces run time

by 55%

78

LULESH performance results – large vs. small input data size

▪ Results are normalized to the 1st

config for both sets(10Gbps

bandwidth and 50us latency)

▪ Sensitivity for link latency

diminishes for large input data size

▪ LULESH can overlap computation

and communication

79

▪ Distributed gem5 enables scalable simulations of distributed systems

▪ Integrated part of the gem5 simulator

▪ Collaboration between ARM Research and University of Illinois (ex-Wisconsin)

▪ Prof. Nam Sung Kim (nskim@illinois.edu)

▪ Mohammad Alian (malian2@illinois.edu)

▪ Gabor Dozsa (gabor.dozsa@arm.com)

▪ Stephan Diestelhorst (stephan.diestelhorst@arm.com)

Conclusions

11-13 September 2017

Robinson College, Cambridge, UK

Submission deadline - 30 April 2017

Early-bird discount ends - 30 June 2017

